3885. Count Special Triplets¶
3885. Count Special Triplets
Medium
You are given an integer array nums.
A special triplet is defined as a triplet of indices (i, j, k) such that:
0 <= i < j < k < n, wheren = nums.lengthnums[i] == nums[j] * 2nums[k] == nums[j] * 2
Return the total number of special triplets in the array.
Since the answer may be large, return it modulo 109 + 7.
Example 1:
Input: nums = [6,3,6]
Output: 1
Explanation:
The only special triplet is (i, j, k) = (0, 1, 2), where:
nums[0] = 6,nums[1] = 3,nums[2] = 6nums[0] = nums[1] * 2 = 3 * 2 = 6nums[2] = nums[1] * 2 = 3 * 2 = 6
Example 2:
Input: nums = [0,1,0,0]
Output: 1
Explanation:
The only special triplet is (i, j, k) = (0, 2, 3), where:
nums[0] = 0,nums[2] = 0,nums[3] = 0nums[0] = nums[2] * 2 = 0 * 2 = 0nums[3] = nums[2] * 2 = 0 * 2 = 0
Example 3:
Input: nums = [8,4,2,8,4]
Output: 2
Explanation:
There are exactly two special triplets:
(i, j, k) = (0, 1, 3)nums[0] = 8,nums[1] = 4,nums[3] = 8nums[0] = nums[1] * 2 = 4 * 2 = 8nums[3] = nums[1] * 2 = 4 * 2 = 8
(i, j, k) = (1, 2, 4)nums[1] = 4,nums[2] = 2,nums[4] = 4nums[1] = nums[2] * 2 = 2 * 2 = 4nums[4] = nums[2] * 2 = 2 * 2 = 4
Constraints:
3 <= n == nums.length <= 1050 <= nums[i] <= 105
Solution¶
import java.util.HashMap;
class Solution {
private int mod = (int)(1e9 + 7);
public int specialTriplets(int[] nums) {
int n = nums.length;
HashMap<Integer, Integer> map = new HashMap<>();
for (int i = 0; i < n; i++)
map.put(nums[i], map.getOrDefault(nums[i], 0) + 1);
HashMap<Integer, Integer> pref_map = new HashMap<>();
long count = 0;
for (int i = 0; i < n; i++) {
pref_map.put(nums[i], pref_map.getOrDefault(nums[i], 0) + 1);
if (nums[i] == 0) {
int left_count = pref_map.getOrDefault(0, 0) - 1;
int right_count = map.getOrDefault(0, 0) - pref_map.getOrDefault(0, 0);
count = (count + (left_count * 1L * right_count) % mod) % mod;
continue;
}
int left_count = pref_map.getOrDefault(nums[i] * 2, 0);
int right_count = map.getOrDefault(nums[i] * 2, 0) - left_count;
count = (count + (left_count * 1L * right_count) % mod) % mod;
}
return (int)(count);
}
}
Complexity Analysis¶
- Time Complexity: O(?)
- Space Complexity: O(?)
Explanation¶
[Add detailed explanation here]