3612. Adjacent Increasing Subarrays Detection I¶
Difficulty: Easy
LeetCode Problem View on GitHub
3612. Adjacent Increasing Subarrays Detection I
Easy
Given an array nums of n integers and an integer k, determine whether there exist two adjacent subarrays of length k such that both subarrays are strictly increasing. Specifically, check if there are two subarrays starting at indices a and b (a < b), where:
- Both subarrays
nums[a..a + k - 1]andnums[b..b + k - 1]are strictly increasing. - The subarrays must be adjacent, meaning
b = a + k.
Return true if it is possible to find two such subarrays, and false otherwise.
A subarray is a contiguous non-empty sequence of elements within an array.
Example 1:
Input: nums = [2,5,7,8,9,2,3,4,3,1], k = 3
Output: true
Explanation:
- The subarray starting at index
2is[7, 8, 9], which is strictly increasing. - The subarray starting at index
5is[2, 3, 4], which is also strictly increasing. - These two subarrays are adjacent, so the result is
true.
Example 2:
Input: nums = [1,2,3,4,4,4,4,5,6,7], k = 5
Output: false
Constraints:
2 <= nums.length <= 1001 <= 2 * k <= nums.length-1000 <= nums[i] <= 1000
Solution¶
class Solution {
public boolean hasIncreasingSubarrays(List<Integer> nums, int k) {
int n = nums.size();
for (int i = 0; i < n; i++) {
if ((i + 2 * k <= n) && check(nums, i , i + 2 * k, k)) return true;
}
return false;
}
private boolean check(List<Integer> nums, int start, int end, int k) {
int n = nums.size();
int prev = -2000;
for (int i = start; i < start + k; i++) {
if (prev == -2000) {
prev = nums.get(i);
}
else {
if (nums.get(i) <= prev) return false;
prev = nums.get(i);
}
}
prev = -2000;
for (int i = start + k; i < end; i++) {
System.out.println(nums.get(i));
if (prev == -2000) {
prev = nums.get(i);
}
else {
if (nums.get(i) <= prev) return false;
prev = nums.get(i);
}
}
return true;
}
}
Complexity Analysis¶
- Time Complexity:
O(?) - Space Complexity:
O(?)
Approach¶
Detailed explanation of the approach will be added here