3165. Find Indices With Index And Value Difference I¶
Difficulty: Easy
LeetCode Problem View on GitHub
3165. Find Indices With Index and Value Difference I
Easy
You are given a 0-indexed integer array nums having length n, an integer indexDifference, and an integer valueDifference.
Your task is to find two indices i and j, both in the range [0, n - 1], that satisfy the following conditions:
abs(i - j) >= indexDifference, andabs(nums[i] - nums[j]) >= valueDifference
Return an integer array answer, where answer = [i, j] if there are two such indices, and answer = [-1, -1] otherwise. If there are multiple choices for the two indices, return any of them.
Note: i and j may be equal.
Example 1:
Input: nums = [5,1,4,1], indexDifference = 2, valueDifference = 4 Output: [0,3] Explanation: In this example, i = 0 and j = 3 can be selected. abs(0 - 3) >= 2 and abs(nums[0] - nums[3]) >= 4. Hence, a valid answer is [0,3]. [3,0] is also a valid answer.
Example 2:
Input: nums = [2,1], indexDifference = 0, valueDifference = 0 Output: [0,0] Explanation: In this example, i = 0 and j = 0 can be selected. abs(0 - 0) >= 0 and abs(nums[0] - nums[0]) >= 0. Hence, a valid answer is [0,0]. Other valid answers are [0,1], [1,0], and [1,1].
Example 3:
Input: nums = [1,2,3], indexDifference = 2, valueDifference = 4 Output: [-1,-1] Explanation: In this example, it can be shown that it is impossible to find two indices that satisfy both conditions. Hence, [-1,-1] is returned.
Constraints:
1 <= n == nums.length <= 1000 <= nums[i] <= 500 <= indexDifference <= 1000 <= valueDifference <= 50
Solution¶
class Solution {
static class Pair {
int node, idx;
public Pair(int node, int idx) {
this.node = node;
this.idx = idx;
}
@Override
public String toString() {
return "(" + node + " " + idx + ")";
}
}
public int[] findIndices(int[] nums, int indexDifference, int valueDifference) {
int n = nums.length;
Pair maxSuff[] = new Pair[n];
Pair minSuff[] = new Pair[n];
maxSuff[n - 1] = new Pair(nums[n - 1], n - 1); minSuff[n - 1] = new Pair(nums[n - 1], n - 1);
for (int i = n - 2; i >= 0; i--) {
if (nums[i] > maxSuff[i + 1].node) {
maxSuff[i] = new Pair(nums[i], i);
}
else
maxSuff[i] = new Pair(maxSuff[i + 1].node, maxSuff[i + 1].idx);
if (nums[i] < minSuff[i + 1].node) {
minSuff[i] = new Pair(nums[i], i);
}
else
minSuff[i] = new Pair(minSuff[i + 1].node, minSuff[i + 1].idx);
}
for (int i = 0; i < n; i++) {
int nextIdx = indexDifference + i;
if (nextIdx < n) {
int maxi = maxSuff[nextIdx].node;
int mini = minSuff[nextIdx].node;
if (Math.abs(nums[i] - maxi) >= valueDifference) {
return new int[]{i, maxSuff[nextIdx].idx};
}
if (Math.abs(nums[i] - mini) >= valueDifference) {
return new int[]{i, minSuff[nextIdx].idx};
}
}
}
return new int[]{-1, -1};
}
}
Complexity Analysis¶
- Time Complexity:
O(?) - Space Complexity:
O(?)
Approach¶
Detailed explanation of the approach will be added here