2839. Maximum Sum Queries¶
Difficulty: Hard
LeetCode Problem View on GitHub
2839. Maximum Sum Queries
Hard
You are given two 0-indexed integer arrays nums1 and nums2, each of length n, and a 1-indexed 2D array queries where queries[i] = [xi, yi].
For the ith query, find the maximum value of nums1[j] + nums2[j] among all indices j (0 <= j < n), where nums1[j] >= xi and nums2[j] >= yi, or -1 if there is no j satisfying the constraints.
Return an array answer where answer[i] is the answer to the ith query.
Example 1:
Input: nums1 = [4,3,1,2], nums2 = [2,4,9,5], queries = [[4,1],[1,3],[2,5]] Output: [6,10,7] Explanation: For the 1st queryxi = 4andyi = 1, we can select indexj = 0sincenums1[j] >= 4andnums2[j] >= 1. The sumnums1[j] + nums2[j]is 6, and we can show that 6 is the maximum we can obtain. For the 2nd queryxi = 1andyi = 3, we can select indexj = 2sincenums1[j] >= 1andnums2[j] >= 3. The sumnums1[j] + nums2[j]is 10, and we can show that 10 is the maximum we can obtain. For the 3rd queryxi = 2andyi = 5, we can select indexj = 3sincenums1[j] >= 2andnums2[j] >= 5. The sumnums1[j] + nums2[j]is 7, and we can show that 7 is the maximum we can obtain. Therefore, we return[6,10,7].
Example 2:
Input: nums1 = [3,2,5], nums2 = [2,3,4], queries = [[4,4],[3,2],[1,1]]
Output: [9,9,9]
Explanation: For this example, we can use index j = 2 for all the queries since it satisfies the constraints for each query.
Example 3:
Input: nums1 = [2,1], nums2 = [2,3], queries = [[3,3]] Output: [-1] Explanation: There is one query in this example withxi= 3 andyi= 3. For every index, j, either nums1[j] <xior nums2[j] <yi. Hence, there is no solution.
Constraints:
nums1.length == nums2.lengthn == nums1.length1 <= n <= 1051 <= nums1[i], nums2[i] <= 1091 <= queries.length <= 105queries[i].length == 2xi == queries[i][1]yi == queries[i][2]1 <= xi, yi <= 109
Solution¶
class Solution {
public int[] maximumSumQueries(int[] nums1, int[] nums2, int[][] queries) {
int q2[][] = new int[queries.length][3], ans[] = new int[queries.length];
for (int i = 0; i < queries.length; ++i) {
q2[i][0] = queries[i][0];
q2[i][1] = queries[i][1];
q2[i][2] = i;
}
int nums[][] = new int[nums1.length][2];
for (int i = 0; i < nums1.length; ++i) {
nums[i][0] = nums1[i];
nums[i][1] = nums2[i];
}
Arrays.sort(nums, (a, b) -> Integer.compare(a[0], b[0]));
Arrays.sort(q2, (a, b) -> Integer.compare(a[0], b[0]));
TreeMap<Integer, Integer> tm = new TreeMap<>();
int index = nums.length - 1;
for (int i = q2.length - 1; i >= 0; --i) {
while (index >= 0 && nums[index][0] >= q2[i][0]) {
insert(tm, nums[index][0], nums[index][1]);
index--;
}
var entry = tm.ceilingEntry(q2[i][1]);
if (entry == null) ans[q2[i][2]] = -1;
else ans[q2[i][2]] = entry.getValue();
}
return ans;
}
private void insert(TreeMap<Integer, Integer> tm, int x, int y) {
int sum = x + y;
if (tm.containsKey(y) && tm.get(y) >= sum) return;
Integer higher = tm.higherKey(y);
if (higher != null && tm.get(higher) >= sum) return;
Set<Integer> hs = new HashSet<>();
Integer lower = tm.lowerKey(y);
while (lower != null) {
if (tm.get(lower) <= sum) hs.add(lower);
else break;
lower = tm.lowerKey(lower);
}
for (int i : hs) tm.remove(i);
tm.put(y, sum);
}
}
Complexity Analysis¶
- Time Complexity:
O(?) - Space Complexity:
O(?)
Approach¶
Detailed explanation of the approach will be added here