Skip to content

2839. Maximum Sum Queries

Difficulty: Hard

LeetCode Problem View on GitHub


2839. Maximum Sum Queries

Hard


You are given two 0-indexed integer arrays nums1 and nums2, each of length n, and a 1-indexed 2D array queries where queries[i] = [xi, yi].

For the ith query, find the maximum value of nums1[j] + nums2[j] among all indices j (0 <= j < n), where nums1[j] >= xi and nums2[j] >= yi, or -1 if there is no j satisfying the constraints.

Return an array answer where answer[i] is the answer to the ith query.

 

Example 1:

Input: nums1 = [4,3,1,2], nums2 = [2,4,9,5], queries = [[4,1],[1,3],[2,5]]
Output: [6,10,7]
Explanation: 
For the 1st query xi = 4 and yi = 1, we can select index j = 0 since nums1[j] >= 4 and nums2[j] >= 1. The sum nums1[j] + nums2[j] is 6, and we can show that 6 is the maximum we can obtain.

For the 2nd query xi = 1 and yi = 3, we can select index j = 2 since nums1[j] >= 1 and nums2[j] >= 3. The sum nums1[j] + nums2[j] is 10, and we can show that 10 is the maximum we can obtain. 

For the 3rd query xi = 2 and yi = 5, we can select index j = 3 since nums1[j] >= 2 and nums2[j] >= 5. The sum nums1[j] + nums2[j] is 7, and we can show that 7 is the maximum we can obtain.

Therefore, we return [6,10,7].

Example 2:

Input: nums1 = [3,2,5], nums2 = [2,3,4], queries = [[4,4],[3,2],[1,1]]
Output: [9,9,9]
Explanation: For this example, we can use index j = 2 for all the queries since it satisfies the constraints for each query.

Example 3:

Input: nums1 = [2,1], nums2 = [2,3], queries = [[3,3]]
Output: [-1]
Explanation: There is one query in this example with xi = 3 and yi = 3. For every index, j, either nums1[j] < xi or nums2[j] < yi. Hence, there is no solution. 

 

Constraints:

  • nums1.length == nums2.length 
  • n == nums1.length 
  • 1 <= n <= 105
  • 1 <= nums1[i], nums2[i] <= 109 
  • 1 <= queries.length <= 105
  • queries[i].length == 2
  • xi == queries[i][1]
  • yi == queries[i][2]
  • 1 <= xi, yi <= 109

Solution

class Solution {
    public int[] maximumSumQueries(int[] nums1, int[] nums2, int[][] queries) {
        int q2[][] = new int[queries.length][3], ans[] = new int[queries.length];
        for (int i = 0; i < queries.length; ++i) {
            q2[i][0] = queries[i][0];
            q2[i][1] = queries[i][1];
            q2[i][2] = i;
        }
        int nums[][] = new int[nums1.length][2];
        for (int i = 0; i < nums1.length; ++i) {
            nums[i][0] = nums1[i];
            nums[i][1] = nums2[i];
        }
        Arrays.sort(nums, (a, b) -> Integer.compare(a[0], b[0]));
        Arrays.sort(q2, (a, b) -> Integer.compare(a[0], b[0]));
        TreeMap<Integer, Integer> tm = new TreeMap<>();
        int index = nums.length - 1;
        for (int i = q2.length - 1; i >= 0; --i) {
            while (index >= 0 && nums[index][0] >= q2[i][0]) {
                insert(tm, nums[index][0], nums[index][1]);
                index--;
            }
            var entry = tm.ceilingEntry(q2[i][1]);
            if (entry == null) ans[q2[i][2]] = -1;
            else ans[q2[i][2]] = entry.getValue();
        }
        return ans;
    }

    private void insert(TreeMap<Integer, Integer> tm, int x, int y) {
        int sum = x + y;
        if (tm.containsKey(y) && tm.get(y) >= sum) return;
        Integer higher = tm.higherKey(y);
        if (higher != null && tm.get(higher) >= sum) return;
        Set<Integer> hs = new HashSet<>();
        Integer lower = tm.lowerKey(y);
        while (lower != null) {
            if (tm.get(lower) <= sum) hs.add(lower);
            else break;
            lower = tm.lowerKey(lower);
        }
        for (int i : hs) tm.remove(i);
        tm.put(y, sum);
    }
}

Complexity Analysis

  • Time Complexity: O(?)
  • Space Complexity: O(?)

Approach

Detailed explanation of the approach will be added here