2552. Maximum Sum Of Distinct Subarrays With Length K¶
Difficulty: Medium
LeetCode Problem View on GitHub
2552. Maximum Sum of Distinct Subarrays With Length K
Medium
You are given an integer array nums and an integer k. Find the maximum subarray sum of all the subarrays of nums that meet the following conditions:
- The length of the subarray is
k, and - All the elements of the subarray are distinct.
Return the maximum subarray sum of all the subarrays that meet the conditions. If no subarray meets the conditions, return 0.
A subarray is a contiguous non-empty sequence of elements within an array.
Example 1:
Input: nums = [1,5,4,2,9,9,9], k = 3 Output: 15 Explanation: The subarrays of nums with length 3 are: - [1,5,4] which meets the requirements and has a sum of 10. - [5,4,2] which meets the requirements and has a sum of 11. - [4,2,9] which meets the requirements and has a sum of 15. - [2,9,9] which does not meet the requirements because the element 9 is repeated. - [9,9,9] which does not meet the requirements because the element 9 is repeated. We return 15 because it is the maximum subarray sum of all the subarrays that meet the conditions
Example 2:
Input: nums = [4,4,4], k = 3 Output: 0 Explanation: The subarrays of nums with length 3 are: - [4,4,4] which does not meet the requirements because the element 4 is repeated. We return 0 because no subarrays meet the conditions.
Constraints:
1 <= k <= nums.length <= 1051 <= nums[i] <= 105
Solution¶
class Solution {
public long maximumSubarraySum(int[] nums, int k) {
int n = nums.length;
HashMap<Integer, Integer> map = new HashMap<>();
long maxi_sum = 0, current_sum = 0;
for (int i = 0; i < k; i++) {
current_sum += nums[i];
map.put(nums[i], map.getOrDefault(nums[i], 0) + 1);
}
if (map.size() == k) maxi_sum = current_sum;
int start = 0;
for (int i = k; i < n; i++) {
current_sum += nums[i];
current_sum -= nums[start];
map.put(nums[i], map.getOrDefault(nums[i], 0) + 1);
map.put(nums[start], map.getOrDefault(nums[start], 0) -1);
if (map.getOrDefault(nums[start], 0) == 0) map.remove(nums[start]);
if (map.size() == k) maxi_sum = Math.max(maxi_sum, current_sum);
start++;
}
return maxi_sum;
}
}
Complexity Analysis¶
- Time Complexity:
O(?) - Space Complexity:
O(?)
Approach¶
Detailed explanation of the approach will be added here