Skip to content

2320. Find All K Distant Indices In An Array

Difficulty: Easy

LeetCode Problem View on GitHub


2320. Find All K-Distant Indices in an Array

Easy


You are given a 0-indexed integer array nums and two integers key and k. A k-distant index is an index i of nums for which there exists at least one index j such that |i - j| <= k and nums[j] == key.

Return a list of all k-distant indices sorted in increasing order.

 

Example 1:

Input: nums = [3,4,9,1,3,9,5], key = 9, k = 1
Output: [1,2,3,4,5,6]
Explanation: Here, nums[2] == key and nums[5] == key.
- For index 0, |0 - 2| > k and |0 - 5| > k, so there is no j where |0 - j| <= k and nums[j] == key. Thus, 0 is not a k-distant index.
- For index 1, |1 - 2| <= k and nums[2] == key, so 1 is a k-distant index.
- For index 2, |2 - 2| <= k and nums[2] == key, so 2 is a k-distant index.
- For index 3, |3 - 2| <= k and nums[2] == key, so 3 is a k-distant index.
- For index 4, |4 - 5| <= k and nums[5] == key, so 4 is a k-distant index.
- For index 5, |5 - 5| <= k and nums[5] == key, so 5 is a k-distant index.
- For index 6, |6 - 5| <= k and nums[5] == key, so 6 is a k-distant index.
Thus, we return [1,2,3,4,5,6] which is sorted in increasing order. 

Example 2:

Input: nums = [2,2,2,2,2], key = 2, k = 2
Output: [0,1,2,3,4]
Explanation: For all indices i in nums, there exists some index j such that |i - j| <= k and nums[j] == key, so every index is a k-distant index. 
Hence, we return [0,1,2,3,4].

 

Constraints:

  • 1 <= nums.length <= 1000
  • 1 <= nums[i] <= 1000
  • key is an integer from the array nums.
  • 1 <= k <= nums.length

Solution

class Solution {
    public List<Integer> findKDistantIndices(int[] nums, int key, int k) {
        int n = nums.length;
        int r = 0;
        List<Integer> res = new ArrayList<>();
         for (int j = 0; j < n; ++j) {
            if (nums[j] == key) {
                int l = Math.max(r, j - k);
                r = Math.min(n - 1, j + k) + 1;
                for (int i = l; i < r; ++i) {
                    res.add(i);
                }
            }
        }
        return res;
    }
}

Complexity Analysis

  • Time Complexity: O(?)
  • Space Complexity: O(?)

Approach

Detailed explanation of the approach will be added here