2150. Kth Smallest Product Of Two Sorted Arrays¶
Difficulty: Hard
LeetCode Problem View on GitHub
2150. Kth Smallest Product of Two Sorted Arrays
Hard
Given two sorted 0-indexed integer arrays nums1 and nums2 as well as an integer k, return the kth (1-based) smallest product of nums1[i] * nums2[j] where 0 = i nums1.length and 0 = j nums2.length.
<<<<
Example 1:
Input: nums1 = [2,5], nums2 = [3,4], k = 2 Output: 8 Explanation: The 2 smallest products are: - nums1[0] * nums2[0] = 2 * 3 = 6 - nums1[0] * nums2[1] = 2 * 4 = 8 The 2nd smallest product is 8.
Example 2:
Input: nums1 = [-4,-2,0,3], nums2 = [2,4], k = 6 Output: 0 Explanation: The 6 smallest products are: - nums1[0] * nums2[1] = (-4) * 4 = -16 - nums1[0] * nums2[0] = (-4) * 2 = -8 - nums1[1] * nums2[1] = (-2) * 4 = -8 - nums1[1] * nums2[0] = (-2) * 2 = -4 - nums1[2] * nums2[0] = 0 * 2 = 0 - nums1[2] * nums2[1] = 0 * 4 = 0 The 6th smallest product is 0.
Example 3:
Input: nums1 = [-2,-1,0,1,2], nums2 = [-3,-1,2,4,5], k = 3 Output: -6 Explanation: The 3 smallest products are: - nums1[0] * nums2[4] = (-2) * 5 = -10 - nums1[0] * nums2[3] = (-2) * 4 = -8 - nums1[4] * nums2[0] = 2 * (-3) = -6 The 3rd smallest product is -6.
Constraints:
1 <= nums1.length, nums2.length <= 5 * 104-105 <= nums1[i], nums2[j] <= 1051 <= k <= nums1.length * nums2.lengthnums1andnums2are sorted.
Solution¶
class Solution {
public long kthSmallestProduct(int[] nums1, int[] nums2, long k) {
int n = nums1.length, m = nums2.length;
long low = -((long)(1e12)), high = (long)(1e12);
while (low <= high) {
long mid = low + (high - low) / 2;
if (ok(nums1, nums2, mid, k))
low = mid + 1;
else
high = mid - 1;
}
return low;
}
private boolean ok(int arr[], int brr[], long req, long k) {
int n = arr.length, m = brr.length;
long count = 0;
for (int i = 0; i < n; i++) {
if (arr[i] == 0) {
if (req >= 0)
count += m;
continue;
} else if (arr[i] < 0) {
int low = 0, high = m - 1;
while (low <= high) {
int mid = low + (high - low) / 2;
if (arr[i] * 1L * brr[mid] <= req)
high = mid - 1;
else
low = mid + 1;
}
count += m - low;
} else {
int low = 0, high = m - 1;
while (low <= high) {
int mid = low + (high - low) / 2;
if (arr[i] * 1L * brr[mid] <= req)
low = mid + 1;
else
high = mid - 1;
}
count += low;
}
}
return count < k;
}
}
Complexity Analysis¶
- Time Complexity:
O(?) - Space Complexity:
O(?)
Approach¶
Detailed explanation of the approach will be added here