Skip to content

1849. Maximum Absolute Sum Of Any Subarray

Difficulty: Medium

LeetCode Problem View on GitHub


1849. Maximum Absolute Sum of Any Subarray

Medium


You are given an integer array nums. The absolute sum of a subarray [numsl, numsl+1, ..., numsr-1, numsr] is abs(numsl + numsl+1 + ... + numsr-1 + numsr).

Return the maximum absolute sum of any (possibly empty) subarray of nums.

Note that abs(x) is defined as follows:

  • If x is a negative integer, then abs(x) = -x.
  • If x is a non-negative integer, then abs(x) = x.

 

Example 1:

Input: nums = [1,-3,2,3,-4]
Output: 5
Explanation: The subarray [2,3] has absolute sum = abs(2+3) = abs(5) = 5.

Example 2:

Input: nums = [2,-5,1,-4,3,-2]
Output: 8
Explanation: The subarray [-5,1,-4] has absolute sum = abs(-5+1-4) = abs(-8) = 8.

 

Constraints:

  • 1 <= nums.length <= 105
  • -104 <= nums[i] <= 104

Solution

class Solution {
    public int maxAbsoluteSum(int[] nums) {
        int n = nums.length;
        int maxi = 0;
        int sum = 0;
        for (int i = 0; i < n; i++) {
            if (nums[i] < 0) {
                maxi = Math.max(maxi, sum);
                if (sum + nums[i] < 0) sum = 0;
                else {
                    sum += nums[i];
                    maxi = Math.max(maxi, sum);
                }
            }
            else sum += nums[i];
        }
        if (sum > 0) maxi = Math.max(maxi, sum);
        sum = 0;
        for (int i = 0; i < n; i++) {
            if (nums[i] > 0) {
                maxi = Math.max(maxi, sum);
                if (sum - nums[i] < 0) sum = 0; 
                else {
                    sum -= nums[i];
                    maxi = Math.max(maxi, sum);
                }
            }
            else sum += Math.abs(nums[i]);
        }
        if (sum > 0) maxi = Math.max(maxi, sum);
        return maxi;
    }
}

Complexity Analysis

  • Time Complexity: O(?)
  • Space Complexity: O(?)

Approach

Detailed explanation of the approach will be added here