1849. Maximum Absolute Sum Of Any Subarray¶
Difficulty: Medium
LeetCode Problem View on GitHub
1849. Maximum Absolute Sum of Any Subarray
Medium
You are given an integer array nums. The absolute sum of a subarray [numsl, numsl+1, ..., numsr-1, numsr] is abs(numsl + numsl+1 + ... + numsr-1 + numsr).
Return the maximum absolute sum of any (possibly empty) subarray of nums.
Note that abs(x) is defined as follows:
- If
xis a negative integer, thenabs(x) = -x. - If
xis a non-negative integer, thenabs(x) = x.
Example 1:
Input: nums = [1,-3,2,3,-4] Output: 5 Explanation: The subarray [2,3] has absolute sum = abs(2+3) = abs(5) = 5.
Example 2:
Input: nums = [2,-5,1,-4,3,-2] Output: 8 Explanation: The subarray [-5,1,-4] has absolute sum = abs(-5+1-4) = abs(-8) = 8.
Constraints:
1 <= nums.length <= 105-104 <= nums[i] <= 104
Solution¶
class Solution {
public int maxAbsoluteSum(int[] nums) {
int n = nums.length;
int maxi = 0;
int sum = 0;
for (int i = 0; i < n; i++) {
if (nums[i] < 0) {
maxi = Math.max(maxi, sum);
if (sum + nums[i] < 0) sum = 0;
else {
sum += nums[i];
maxi = Math.max(maxi, sum);
}
}
else sum += nums[i];
}
if (sum > 0) maxi = Math.max(maxi, sum);
sum = 0;
for (int i = 0; i < n; i++) {
if (nums[i] > 0) {
maxi = Math.max(maxi, sum);
if (sum - nums[i] < 0) sum = 0;
else {
sum -= nums[i];
maxi = Math.max(maxi, sum);
}
}
else sum += Math.abs(nums[i]);
}
if (sum > 0) maxi = Math.max(maxi, sum);
return maxi;
}
}
Complexity Analysis¶
- Time Complexity:
O(?) - Space Complexity:
O(?)
Approach¶
Detailed explanation of the approach will be added here