Skip to content

1783. Ways To Make A Fair Array

Difficulty: Medium

LeetCode Problem View on GitHub


1783. Ways to Make a Fair Array

Medium


You are given an integer array nums. You can choose exactly one index (0-indexed) and remove the element. Notice that the index of the elements may change after the removal.

For example, if nums = [6,1,7,4,1]:

  • Choosing to remove index 1 results in nums = [6,7,4,1].
  • Choosing to remove index 2 results in nums = [6,1,4,1].
  • Choosing to remove index 4 results in nums = [6,1,7,4].

An array is fair if the sum of the odd-indexed values equals the sum of the even-indexed values.

Return the number of indices that you could choose such that after the removal, nums is fair.

 

Example 1:

Input: nums = [2,1,6,4]
Output: 1
Explanation:
Remove index 0: [1,6,4] -> Even sum: 1 + 4 = 5. Odd sum: 6. Not fair.
Remove index 1: [2,6,4] -> Even sum: 2 + 4 = 6. Odd sum: 6. Fair.
Remove index 2: [2,1,4] -> Even sum: 2 + 4 = 6. Odd sum: 1. Not fair.
Remove index 3: [2,1,6] -> Even sum: 2 + 6 = 8. Odd sum: 1. Not fair.
There is 1 index that you can remove to make nums fair.

Example 2:

Input: nums = [1,1,1]
Output: 3
Explanation: You can remove any index and the remaining array is fair.

Example 3:

Input: nums = [1,2,3]
Output: 0
Explanation: You cannot make a fair array after removing any index.

 

Constraints:

  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 104

Solution

class Solution {
    public int waysToMakeFair(int[] nums) {
        int n = nums.length;
        int prefEven[] = new int[n];
        int prefOdd[] = new int[n];
        int suffEven[] = new int[n];
        int suffOdd[] = new int[n];

        if (n == 1)
            return 1;

        int evenSum = 0, oddSum = 0;
        for (int i = 0; i < n; i++) {
            if (i % 2 == 0)
                evenSum += nums[i];
            else
                oddSum += nums[i];
            prefEven[i] = evenSum;
            prefOdd[i] = oddSum;
        }

        evenSum = 0;
        oddSum = 0;
        for (int i = n - 1; i >= 0; i--) {
            if (i % 2 == 0)
                evenSum += nums[i];
            else
                oddSum += nums[i];
            suffEven[i] = evenSum;
            suffOdd[i] = oddSum;
        }

        int count = 0;
        for (int i = 0; i < n; i++) {
            if (i == 0) {
                if (suffEven[i + 1] == suffOdd[i + 1])
                    count++;
            } else if (i == n - 1) {
                if (prefEven[i - 1] == prefOdd[i - 1])
                    count++;
            } else {
                evenSum = prefEven[i - 1];
                oddSum = prefOdd[i - 1];
                evenSum += suffOdd[i + 1];
                oddSum += suffEven[i + 1];
                if (evenSum == oddSum)
                    count++;

            }
        }
        return count;
    }
}

Complexity Analysis

  • Time Complexity: O(?)
  • Space Complexity: O(?)

Approach

Detailed explanation of the approach will be added here