1145. Number Of Submatrices That Sum To Target¶
Difficulty: Hard
LeetCode Problem View on GitHub
1145. Number of Submatrices That Sum to Target
Hard
Given a matrix and a target, return the number of non-empty submatrices that sum to target.
A submatrix x1, y1, x2, y2 is the set of all cells matrix[x][y] with x1 <= x <= x2 and y1 <= y <= y2.
Two submatrices (x1, y1, x2, y2) and (x1', y1', x2', y2') are different if they have some coordinate that is different: for example, if x1 != x1'.
Example 1:

Input: matrix = [[0,1,0],[1,1,1],[0,1,0]], target = 0 Output: 4 Explanation: The four 1x1 submatrices that only contain 0.
Example 2:
Input: matrix = [[1,-1],[-1,1]], target = 0 Output: 5 Explanation: The two 1x2 submatrices, plus the two 2x1 submatrices, plus the 2x2 submatrix.
Example 3:
Input: matrix = [[904]], target = 0 Output: 0
Constraints:
1 <= matrix.length <= 1001 <= matrix[0].length <= 100-1000 <= matrix[i][j] <= 1000-10^8 <= target <= 10^8
Solution¶
class Solution {
private int pref[][];
public int numSubmatrixSumTarget(int[][] matrix, int target) {
int n = matrix.length;
int m = matrix[0].length;
build(matrix);
int count = 0;
for (int x1 = 0; x1 < n; x1++) {
for (int y1 = 0; y1 < m; y1++) {
for (int x2 = x1; x2 < n; x2++) {
for (int y2 = y1; y2 < m; y2++) {
if (query(x1, y1, x2, y2) == target)
count++;
}
}
}
}
return count;
}
private void build(int arr[][]) {
int n = arr.length, m = arr[0].length;
pref = new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
pref[i][j] = arr[i][j];
if (i - 1 >= 0)
pref[i][j] += pref[i - 1][j];
if (j - 1 >= 0)
pref[i][j] += pref[i][j - 1];
if (i - 1 >= 0 && j - 1 >= 0)
pref[i][j] -= pref[i - 1][j - 1];
}
}
}
private int query(int x1, int y1, int x2, int y2) {
int total = pref[x2][y2];
if (x1 - 1 >= 0)
total -= pref[x1 - 1][y2];
if (y1 - 1 >= 0)
total -= pref[x2][y1 - 1];
if (x1 - 1 >= 0 && y1 - 1 >= 0)
total += pref[x1 - 1][y1 - 1];
return total;
}
}
Complexity Analysis¶
- Time Complexity:
O(?) - Space Complexity:
O(?)
Approach¶
Detailed explanation of the approach will be added here