984. Most Stones Removed With Same Row Or Column¶
Difficulty: Medium
LeetCode Problem View on GitHub
984. Most Stones Removed with Same Row or Column
Medium
On a 2D plane, we place n stones at some integer coordinate points. Each coordinate point may have at most one stone.
A stone can be removed if it shares either the same row or the same column as another stone that has not been removed.
Given an array stones of length n where stones[i] = [xi, yi] represents the location of the ith stone, return the largest possible number of stones that can be removed.
Example 1:
Input: stones = [[0,0],[0,1],[1,0],[1,2],[2,1],[2,2]] Output: 5 Explanation: One way to remove 5 stones is as follows: 1. Remove stone [2,2] because it shares the same row as [2,1]. 2. Remove stone [2,1] because it shares the same column as [0,1]. 3. Remove stone [1,2] because it shares the same row as [1,0]. 4. Remove stone [1,0] because it shares the same column as [0,0]. 5. Remove stone [0,1] because it shares the same row as [0,0]. Stone [0,0] cannot be removed since it does not share a row/column with another stone still on the plane.
Example 2:
Input: stones = [[0,0],[0,2],[1,1],[2,0],[2,2]] Output: 3 Explanation: One way to make 3 moves is as follows: 1. Remove stone [2,2] because it shares the same row as [2,0]. 2. Remove stone [2,0] because it shares the same column as [0,0]. 3. Remove stone [0,2] because it shares the same row as [0,0]. Stones [0,0] and [1,1] cannot be removed since they do not share a row/column with another stone still on the plane.
Example 3:
Input: stones = [[0,0]] Output: 0 Explanation: [0,0] is the only stone on the plane, so you cannot remove it.
Constraints:
1 <= stones.length <= 10000 <= xi, yi <= 104- No two stones are at the same coordinate point.
Solution¶
class Solution {
static class DSU {
int parent[], size[];
public DSU(int n) {
parent = new int[n + 1];
size = new int[n + 1];
for (int i = 0; i <= n; i++) {
parent[i] = i;
size[i] = 1;
}
}
public int Leader(int u) {
if (u == parent[u])
return u;
return parent[u] = Leader(parent[u]);
}
public void merge(int u, int v) {
u = Leader(u);
v = Leader(v);
if (u == v)
return;
if (size[v] > size[u]) {
int temp = u;
u = v;
v = temp;
}
size[u] += size[v];
parent[v] = u;
}
}
public int removeStones(int[][] stones) {
int n = stones.length;
DSU dsu = new DSU(n + 1);
HashMap<Integer, Integer> rowId = new HashMap<>();
HashMap<Integer, Integer> colId = new HashMap<>();
HashSet<Integer> rowOccurred = new HashSet<>();
HashSet<Integer> colOccurred = new HashSet<>();
int currId = 1;
for (int i = 0; i < stones.length; i++) {
int x = stones[i][0], y = stones[i][1];
if (rowOccurred.contains(x) && colOccurred.contains(y)) {
//This stones made two components to join;
int getRowId = rowId.get(x);
int getColId = colId.get(y);
dsu.merge(getRowId, getColId);
dsu.merge(currId, getRowId);
rowOccurred.add(x);
colOccurred.add(y);
}
else if (rowOccurred.contains(x)) {
// It matches only with one of the rows;
int getRowId = rowId.get(x);
dsu.merge(getRowId, currId);
rowOccurred.add(x);
colOccurred.add(y);
colId.put(y, currId);
}
else if (colOccurred.contains(y)) {
// It matches with only one of the col;
int getColId = colId.get(y);
dsu.merge(getColId, currId);
rowOccurred.add(x);
colOccurred.add(y);
rowId.put(x, currId);
}
else {
// It does not matches with any of the row's or col's
colId.put(y, currId);
rowId.put(x, currId);
rowOccurred.add(x);
colOccurred.add(y);
}
currId++;
}
int count = 0;
for (int i = 1; i < currId; i++) {
if (dsu.Leader(i) == i) {
count += dsu.size[i] - 1;
}
}
return count;
}
}
Complexity Analysis¶
- Time Complexity:
O(?) - Space Complexity:
O(?)
Approach¶
Detailed explanation of the approach will be added here