925. Construct Binary Tree From Preorder And Postorder Traversal¶
Difficulty: Medium
LeetCode Problem View on GitHub
925. Construct Binary Tree from Preorder and Postorder Traversal
Medium
Given two integer arrays, preorder and postorder where preorder is the preorder traversal of a binary tree of distinct values and postorder is the postorder traversal of the same tree, reconstruct and return the binary tree.
If there exist multiple answers, you can return any of them.
Example 1:

Input: preorder = [1,2,4,5,3,6,7], postorder = [4,5,2,6,7,3,1] Output: [1,2,3,4,5,6,7]
Example 2:
Input: preorder = [1], postorder = [1] Output: [1]
Constraints:
1 <= preorder.length <= 301 <= preorder[i] <= preorder.length- All the values of
preorderare unique. postorder.length == preorder.length1 <= postorder[i] <= postorder.length- All the values of
postorderare unique. - It is guaranteed that
preorderandpostorderare the preorder traversal and postorder traversal of the same binary tree.
Solution¶
class Solution {
public TreeNode constructFromPrePost(int[] pre, int[] post) {
Map<Integer, Integer> postToIndex = new HashMap<>();
for (int i = 0; i < post.length; ++i) postToIndex.put(post[i], i);
return build(pre, 0, pre.length - 1, post, 0, post.length - 1, postToIndex);
}
private TreeNode build(int[] pre, int preStart, int preEnd, int[] post, int postStart, int postEnd, Map<Integer,Integer>postToIndex) {
if (preStart > preEnd) return null;
if (preStart == preEnd) return new TreeNode(pre[preStart]);
final int rootVal = pre[preStart];
final int leftRootVal = pre[preStart + 1];
final int leftRootPostIndex = postToIndex.get(leftRootVal);
final int leftSize = leftRootPostIndex - postStart + 1;
TreeNode root = new TreeNode(rootVal);
root.left = build(pre, preStart + 1, preStart + leftSize, post, postStart, leftRootPostIndex,
postToIndex);
root.right = build(pre, preStart + leftSize + 1, preEnd, post, leftRootPostIndex + 1,
postEnd - 1, postToIndex);
return root;
}
}
Complexity Analysis¶
- Time Complexity:
O(?) - Space Complexity:
O(?)
Approach¶
Detailed explanation of the approach will be added here