Skip to content

925. Construct Binary Tree From Preorder And Postorder Traversal

Difficulty: Medium

LeetCode Problem View on GitHub


925. Construct Binary Tree from Preorder and Postorder Traversal

Medium


Given two integer arrays, preorder and postorder where preorder is the preorder traversal of a binary tree of distinct values and postorder is the postorder traversal of the same tree, reconstruct and return the binary tree.

If there exist multiple answers, you can return any of them.

 

Example 1:

Input: preorder = [1,2,4,5,3,6,7], postorder = [4,5,2,6,7,3,1]
Output: [1,2,3,4,5,6,7]

Example 2:

Input: preorder = [1], postorder = [1]
Output: [1]

 

Constraints:

  • 1 <= preorder.length <= 30
  • 1 <= preorder[i] <= preorder.length
  • All the values of preorder are unique.
  • postorder.length == preorder.length
  • 1 <= postorder[i] <= postorder.length
  • All the values of postorder are unique.
  • It is guaranteed that preorder and postorder are the preorder traversal and postorder traversal of the same binary tree.

Solution

class Solution {
  public TreeNode constructFromPrePost(int[] pre, int[] post) {
    Map<Integer, Integer> postToIndex = new HashMap<>();
    for (int i = 0; i < post.length; ++i) postToIndex.put(post[i], i);
    return build(pre, 0, pre.length - 1, post, 0, post.length - 1, postToIndex);
  }

  private TreeNode build(int[] pre, int preStart, int preEnd, int[] post, int postStart, int postEnd, Map<Integer,Integer>postToIndex) {
    if (preStart > preEnd) return null;
    if (preStart == preEnd) return new TreeNode(pre[preStart]);
    final int rootVal = pre[preStart];
    final int leftRootVal = pre[preStart + 1];
    final int leftRootPostIndex = postToIndex.get(leftRootVal);
    final int leftSize = leftRootPostIndex - postStart + 1;
    TreeNode root = new TreeNode(rootVal);
    root.left = build(pre, preStart + 1, preStart + leftSize, post, postStart, leftRootPostIndex,
                      postToIndex);
    root.right = build(pre, preStart + leftSize + 1, preEnd, post, leftRootPostIndex + 1,
                       postEnd - 1, postToIndex);
    return root;
  }
}

Complexity Analysis

  • Time Complexity: O(?)
  • Space Complexity: O(?)

Approach

Detailed explanation of the approach will be added here