424. Longest Repeating Character Replacement¶
Difficulty: Medium
LeetCode Problem View on GitHub
424. Longest Repeating Character Replacement
Medium
You are given a string s and an integer k. You can choose any character of the string and change it to any other uppercase English character. You can perform this operation at most k times.
Return the length of the longest substring containing the same letter you can get after performing the above operations.
Example 1:
Input: s = "ABAB", k = 2 Output: 4 Explanation: Replace the two 'A's with two 'B's or vice versa.
Example 2:
Input: s = "AABABBA", k = 1 Output: 4 Explanation: Replace the one 'A' in the middle with 'B' and form "AABBBBA". The substring "BBBB" has the longest repeating letters, which is 4. There may exists other ways to achieve this answer too.
Constraints:
1 <= s.length <= 105sconsists of only uppercase English letters.0 <= k <= s.length
Solution¶
class Solution {
public static int characterReplacement(String s, int k) {
int n = s.length();
ArrayList<ArrayList<Integer>> pos = new ArrayList<>();
for (int i = 0; i <= 30; i++) pos.add(new ArrayList<>());
for (int i = 0; i < n; i++) pos.get(s.charAt(i) - 'A').add(i);
int low = 1, high = n, ans = -1;
while (low <= high) {
int mid = low + (high - low) / 2;
if (ok(mid, s, k, pos)) {
ans = mid;
low = mid + 1;
}
else high = mid - 1;
}
return ans;
}
private static boolean ok(int mid, String s, int k, ArrayList<ArrayList<Integer>> pos) {
int n = s.length();
int maxi = 0;
for (int ch = 'A'; ch <= 'Z'; ch++) {
if (pos.get(ch - 'A').size() == 0) continue;
if (pos.get(ch - 'A').size() == 1) maxi = Math.max(maxi, k + 1);
int current_k = k;
ArrayList<Integer> temp = pos.get(ch - 'A');
maxi = Math.max(maxi, solve(temp, k , s));
}
return maxi >= mid;
}
private static int solve(ArrayList<Integer> res, int k, String s) {
int n = res.size();
int left = 0 , right = 0;
int current_maxi = 0, maxi = 0;
while (left < n) {
while (right + 1 < n && res.get(right + 1) - res.get(right) - 1 <= k) {
k -= res.get(right + 1) - res.get(right) - 1;
right++;
}
maxi = Math.max(maxi, Math.min(s.length() , res.get(right) - res.get(left) + 1 + k));
left++;
if (left - 1 >= 0 && left < n) k += res.get(left) - res.get(left - 1) - 1;
}
return maxi;
}
}
Complexity Analysis¶
- Time Complexity:
O(?) - Space Complexity:
O(?)
Approach¶
Detailed explanation of the approach will be added here