Skip to content

337. House Robber Iii

Difficulty: Medium

LeetCode Problem View on GitHub


337. House Robber III

Medium


The thief has found himself a new place for his thievery again. There is only one entrance to this area, called root.

Besides the root, each house has one and only one parent house. After a tour, the smart thief realized that all houses in this place form a binary tree. It will automatically contact the police if two directly-linked houses were broken into on the same night.

Given the root of the binary tree, return the maximum amount of money the thief can rob without alerting the police.

 

Example 1:

Input: root = [3,2,3,null,3,null,1]
Output: 7
Explanation: Maximum amount of money the thief can rob = 3 + 3 + 1 = 7.

Example 2:

Input: root = [3,4,5,1,3,null,1]
Output: 9
Explanation: Maximum amount of money the thief can rob = 4 + 5 = 9.

 

Constraints:

  • The number of nodes in the tree is in the range [1, 104].
  • 0 <= Node.val <= 104

Solution

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    private ArrayList<ArrayList<Integer>> adj;
    private int cost[];
    private int dp1[];
    private int dp2[];
    public int rob(TreeNode root) {
        build_tree(root);
        //dp1 = taking value at node i;
        //dp2 = not taking value at node i;
        dp1 = new int[(int)(1e4) + 1];
        dp2 = new int[(int)(1e4) + 1];
        dfs(1, -1);
        return Math.max(dp1[1] , dp2[1]);
    }
    private void dfs(int u , int par) {
        if (adj.get(u).size() == 1 && u != 1) {
            dp1[u] = cost[u];
            dp2[u] = 0;
            return;
        }
        for (int v : adj.get(u)) {
            if (v != par) {
                dfs(v, u);
                dp2[u] += Math.max(dp1[v] , dp2[v]);
                dp1[u] += dp2[v];
            }
        }
        dp1[u] += cost[u];
    }
    private void build_tree(TreeNode root) {
        adj = new ArrayList<>();
        cost = new int[(int)(1e5) + 1];
        HashMap<TreeNode, Integer> map1 = new HashMap<>();
        for (int i = 0; i <= (int)(1e4 + 1); i++) adj.add(new ArrayList<>());
        int id = 1;
        Queue<TreeNode> q = new LinkedList<>();
        q.offer(root);
        while (q.size() > 0) {
            int len = q.size();
            for (int i = 0; i < len; i++) {
                if (!map1.containsKey(q.peek())) {
                    map1.put(q.peek(), id);
                    id++;
                } 
                int u = map1.get(q.peek());
                cost[u] = q.peek().val;
                if (q.peek().left != null) {
                    map1.put(q.peek().left, id);
                    int v = id;
                    cost[v] = q.peek().left.val;
                    adj.get(u).add(v);
                    adj.get(v).add(u);
                    id++;
                    q.offer(q.peek().left);
                }
                if (q.peek().right != null) {
                    map1.put(q.peek().right, id);
                    int v = id;
                    adj.get(u).add(v);
                    adj.get(v).add(u);
                    cost[v] = q.peek().right.val;
                    id++;
                    q.offer(q.peek().right);
                }
                q.poll();
            }
        }
    }
}

Complexity Analysis

  • Time Complexity: O(?)
  • Space Complexity: O(?)

Approach

Detailed explanation of the approach will be added here