Skip to content

241. Different Ways To Add Parentheses

Difficulty: Medium

LeetCode Problem View on GitHub


241. Different Ways to Add Parentheses

Medium


Given a string expression of numbers and operators, return all possible results from computing all the different possible ways to group numbers and operators. You may return the answer in any order.

The test cases are generated such that the output values fit in a 32-bit integer and the number of different results does not exceed 104.

 

Example 1:

Input: expression = "2-1-1"
Output: [0,2]
Explanation:
((2-1)-1) = 0 
(2-(1-1)) = 2

Example 2:

Input: expression = "2*3-4*5"
Output: [-34,-14,-10,-10,10]
Explanation:
(2*(3-(4*5))) = -34 
((2*3)-(4*5)) = -14 
((2*(3-4))*5) = -10 
(2*((3-4)*5)) = -10 
(((2*3)-4)*5) = 10

 

Constraints:

  • 1 <= expression.length <= 20
  • expression consists of digits and the operator '+', '-', and '*'.
  • All the integer values in the input expression are in the range [0, 99].
  • The integer values in the input expression do not have a leading '-' or '+' denoting the sign.

Solution

class Solution {
    public List<Integer> diffWaysToCompute(String expression) {
        return diffWaysToCompute(expression, new HashMap<>());
    }
    private List<Integer> diffWaysToCompute(String expression, Map<String, List<Integer>> map) {
        if (map.containsKey(expression)) return map.get(expression);
        ArrayList<Integer> values = new ArrayList<Integer>();
        if (!hasOperator(expression))
            values.add(Integer.parseInt(expression));
        else
            for (int i = 0; i < expression.length(); i++) {
                char symbol = expression.charAt(i);
                if (!Character.isDigit(symbol)) {
                    List<Integer> leftParts = diffWaysToCompute(expression.substring(0, i), map);
                    List<Integer> rightParts = diffWaysToCompute(expression.substring(i + 1), map);
                    for (int l : leftParts)
                        for (int r : rightParts)
                            switch (symbol) {
                                case '+' -> values.add(l + r);
                                case '-' -> values.add(l - r);
                                case '*' -> values.add(l * r);
                            }
                }
            }
        return map.compute(expression, (k,v) -> values);
    }
    private boolean hasOperator(String expression) {
        for (var i = 0; i < expression.length(); i++)
            switch (expression.charAt(i)) {
                case '+', '-', '*' -> {
                    return true;
                }
            }
        return false;
    }
}

Complexity Analysis

  • Time Complexity: O(?)
  • Space Complexity: O(?)

Approach

Detailed explanation of the approach will be added here