36. Valid Sudoku¶
Difficulty: Medium
LeetCode Problem View on GitHub
36. Valid Sudoku
Medium
Determine if a 9 x 9 Sudoku board is valid. Only the filled cells need to be validated according to the following rules:
- Each row must contain the digits
1-9without repetition. - Each column must contain the digits
1-9without repetition. - Each of the nine
3 x 3sub-boxes of the grid must contain the digits1-9without repetition.
Note:
- A Sudoku board (partially filled) could be valid but is not necessarily solvable.
- Only the filled cells need to be validated according to the mentioned rules.
Example 1:
![]()
Input: board = [["5","3",".",".","7",".",".",".","."] ,["6",".",".","1","9","5",".",".","."] ,[".","9","8",".",".",".",".","6","."] ,["8",".",".",".","6",".",".",".","3"] ,["4",".",".","8",".","3",".",".","1"] ,["7",".",".",".","2",".",".",".","6"] ,[".","6",".",".",".",".","2","8","."] ,[".",".",".","4","1","9",".",".","5"] ,[".",".",".",".","8",".",".","7","9"]] Output: true
Example 2:
Input: board = [["8","3",".",".","7",".",".",".","."] ,["6",".",".","1","9","5",".",".","."] ,[".","9","8",".",".",".",".","6","."] ,["8",".",".",".","6",".",".",".","3"] ,["4",".",".","8",".","3",".",".","1"] ,["7",".",".",".","2",".",".",".","6"] ,[".","6",".",".",".",".","2","8","."] ,[".",".",".","4","1","9",".",".","5"] ,[".",".",".",".","8",".",".","7","9"]] Output: false Explanation: Same as Example 1, except with the 5 in the top left corner being modified to 8. Since there are two 8's in the top left 3x3 sub-box, it is invalid.
Constraints:
board.length == 9board[i].length == 9board[i][j]is a digit1-9or'.'.
Solution¶
class Solution {
public boolean isValidSudoku(char[][] board) {
int row = board.length, col = board[0].length;
for (int i = 0; i < row; i++)
if (!validRow(board, i))
return false;
for (int j = 0; j < col; j++) {
if (!validCol(board, j))
return false;
}
for (int i = 0; i < row; i += 3) {
for (int j = 0; j < col; j += 3) {
if (!validSquare(board, i, j))
return false;
}
}
return true;
}
public static boolean validRow(char[][] board, int row) {
boolean vis[] = new boolean[10];
for(int j = 0; j < board[0].length; j++) {
if (board[row][j] == '.')
continue;
if (vis[board[row][j] - '1'] == true)
return false;
vis[board[row][j] - '1'] = true;
}
return true;
}
public static boolean validCol(char board[][], int col) {
boolean vis[] = new boolean[10];
for(int i = 0; i < board.length; i++) {
if (board[i][col] == '.')
continue;
if (vis[board[i][col] - '1'] == true)
return false;
vis[board[i][col] - '1'] = true;
}
return true;
}
public static boolean validSquare(char board[][], int row, int col) {
boolean vis[] = new boolean[10];
for (int i = row; i < row + 3; i++) {
for (int j = col; j < col + 3; j++) {
if (board[i][j] == '.')
continue;
if (vis[board[i][j] - '1'] == true)
return false;
vis[board[i][j] - '1'] = true;
}
}
return true;
}
}
Complexity Analysis¶
- Time Complexity:
O(?) - Space Complexity:
O(?)
Approach¶
Detailed explanation of the approach will be added here