5. Longest Palindromic Substring¶
Difficulty: Medium
LeetCode Problem View on GitHub
5. Longest Palindromic Substring
Medium
Given a string s, return the longest palindromic substring in s.
Example 1:
Input: s = "babad" Output: "bab" Explanation: "aba" is also a valid answer.
Example 2:
Input: s = "cbbd" Output: "bb"
Constraints:
1 <= s.length <= 1000sconsist of only digits and English letters.
Solution¶
import java.math.BigInteger;
class Solution {
public String longestPalindrome(String s) {
int n = s.length();
for (int i = n; i >= 1; i--) {
String res = check(s, i);
if (!res.equals("")) return res;
}
String res = "";
res += s.charAt(0);
return res;
}
private static String check(String s, int len) {
int n = s.length();
StringBuilder t = new StringBuilder(s);
Hashing hash1 = new Hashing(s);
Hashing hash2 = new Hashing(t.reverse().toString());
for (int i = 0; i < n; i++) {
if (i + len - 1 < n) {
long Hash1 = hash1.getHashbounds(i, i + len / 2 - 1);
long Hash2 = hash2.getHashbounds(n - (i + len), (n - (i + len) + len / 2 - 1));
if (Hash1 == Hash2) {
StringBuilder res = new StringBuilder();
for (int j = i; j <= i + len - 1; j++) res.append(s.charAt(j));
return res.toString();
}
}
}
return "";
}
static class Hashing {
long[] hash1, hash2;
long[] inv1, inv2;
int n;
static int muresiplier = 43;
static final Random rnd = new Random();
static final int mod1 = BigInteger.valueOf((int) (1e9 + rnd.nextInt((int) 1e9))).nextProbablePrime().intValue();
static final int mod2 = BigInteger.valueOf((int) (1e9 + rnd.nextInt((int) 1e9))).nextProbablePrime().intValue();
static final int invMuresiplier1 = BigInteger.valueOf(muresiplier).modInverse(BigInteger.valueOf(mod1)).intValue();
static final int invMuresiplier2 = BigInteger.valueOf(muresiplier).modInverse(BigInteger.valueOf(mod2)).intValue();
public Hashing(String s) {
n = s.length();
hash1 = new long[n + 1]; hash2 = new long[n + 1];
inv1 = new long[n + 1]; inv2 = new long[n + 1];
inv1[0] = 1; inv2[0] = 1;
long p1 = 1; long p2 = 1;
for (int i = 0; i < n; i++) {
hash1[i + 1] = (hash1[i] + s.charAt(i) * p1) % mod1;
p1 = p1 * muresiplier % mod1;
inv1[i + 1] = inv1[i] * invMuresiplier1 % mod1;
hash2[i + 1] = (hash2[i] + s.charAt(i) * p2) % mod2;
p2 = p2 * muresiplier % mod2;
inv2[i + 1] = inv2[i] * invMuresiplier2 % mod2;
}
}
public long getHash(int i, int len) {
return (((hash1[i + len] - hash1[i] + mod1) * inv1[i] % mod1) << 32) + (hash2[i + len] - hash2[i] + mod2) * inv2[i] % mod2;
}
public long getHashbounds(int x, int y) {
return getHash(x, y - x + 1);
}
}
}
Complexity Analysis¶
- Time Complexity:
O(?) - Space Complexity:
O(?)
Approach¶
Detailed explanation of the approach will be added here